Tuesday, July 29, 2008

HASS CNC TIPS & TRICKS

Electronic Thermal Compensation (ETC)

This powerful software feature – standard on Haas machine tools – uses a proprietary algorithm to compensate for the expansion and contraction (due to heating and cooling) of each linear axis. The ETC algorithm utilizes a model of the lead screw, and estimates heating of the screw based on the distance traveled and the torque applied to the motor. Heat is represented by a thermal coefficient of expansion, and the axis distance is multiplied by the coefficient to get the amount of correction needed. A real-time clock allows monitoring of in-motion time as well as non-motion time (e.g., lunch, breaks) and compensates accordingly. Our testing shows about a 4 to 1 reduction in the error associated with average lead screw growth. A series of parameters allows this feature to be implemented on each axis of various models, with some room for fine-tuning. Keep in mind that ETC does not correct for: thermal growth due to changes in ambient temperature; growth due to part expansion; or growth due to spindle expansion/retraction.


Setting 103 (CYC START/FH SAME KEY):

When Setting 103 is on, the CYCLE START button functions as the Feed Hold key as well. When CYCLE START is pressed and held in, the machine will run through the program; when it's released, the machine will stop in a feed hold. This gives you much better control when setting up a new program. This feature should be turned off when you're done using it. Setting 103 can be changed while running a program, but it cannot be on when Setting 104 (below) is on.


Setting 104 (JOG HANDLE TO SNGL BLK):

When running a program in MEM mode, in either the Program or Graphics display, the SINGLE BLOCK key allows you to cycle through the active program one line at a time. Each press of the CYCLE START button will cause one program line to be executed, whether the machine is in operation or you're in Graphics.

Under the same conditions (MEM mode; Program or Graphics display), turning on Setting 104 (JOG HANDL TO SNGL BLK) allows the jog handle to be used for single block execution. Each counterclockwise click of the jog handle will step through a program line, while a clockwise click will cause a feed hold. Setting 104 can be changed while running a program, but it cannot be on when Setting 103 is on.


Advanced Editor:

The Advanced Editor provides the user with a friendly, menu-oriented environment for editing programs, plus it allows viewing of two programs simultaneously. Refer to the Operator's manual for a detailed description.


Helical Motion Enhancement:

Helical motion now includes unrestricted 3rd, 4th, & 5th axis motion. All restrictions on the length(s) of such motion on the third, fourth, and/or fifth axes have been eliminated. This means that the programmed feedrate will be applied to the total distance traveled along all axes of motion. Total distance is calculated from the square root of the sum of squares of the circumferential distance and any/all other axis distances. That is, each axis distance (whether linear or rotary) is squared, the squared values are added up, and the square root of the sum equals the total distance. Rotary axis distance will of course depend on, and will be internally calculated from, the diameters specified in Setting 34 (4th axis diameter) and Setting 79 (5th axis diameter).


Jog Handle Use for Spindle Speed and Feedrate Overrides:

Pressing the HANDLE CONTROL SPINDLE button allows the jog handle to be used for spindle overrides. Turning the jog handle clockwise increases the spindle speed (up to 999%), and turning it counterclockwise will reduce spindle speed (down to 0%). The spindle speed display will blink as it is adjusted. Pressing the HANDLE CONTROL SPINDLE button again turns off this function.

Similarly, the HANDLE CONTROL FEEDRATE button allows the jog handle to be used for feedrate overrides. Again, clockwise motion of the jog handle increases the feedrate (up to 999%), while counterclockwise motion reduces it (down to 0%). The feedrate display will blink as it is adjusted. Pressing the HANDLE CONTROL FEEDRATE button again turns off this function.


Cylindrical Mapping (G107)

This VMC/HMC feature translates all programmed motion along a specific linear axis into the equivalent motion along the surface of a cylinder (i.e., a part chucked or fixtured to any Haas rotary table). A typical example is a cutout on a tube. In this case, the Y axis is converted (or mapped) to the A axis, assuming you have the tube positioned between a rotary table and tailstock along the X axis. In the past, trigonometry or a CAM system was required to calculate these conversions. Now, the Haas control easily converts the linear data for a specified cylinder diameter. The possibilities are endless, beginning with cams, cylindrical dies and general 4th- and 5th-axis work.


Inverse Time Feed Mode (G93)

This VMC/HMC feature specifies that all F (feedrate) values are to be interpreted as "strokes per minute." This is equivalent to saying that the F code value, when DIVIDED INTO 60, is the number of seconds that the motion should take to complete. G93 is generally used in 5-axis work, and sometimes in 4-axis work as well. It's a way of translating the linear (inches/min) feedrate assigned to the program – F30, say – into a value that takes rotary motion into account. When G93 is activated, the F value will tell you how many times per minute the stroke (tool move) can be repeated, based on the linear F value.

Haas has been able to accommodate full 5-axis machining for many years; however, this feature, in conjunction with aftermarket CAM systems and their post-processors, offers even more flexibility and versatility.


 

COURTESY : www.hasscnc.com

1 comment:

Anonymous said...

nice